When To Continue Thinking: Adaptive Thinking Mode Switching For Efficient Reasoning | Awesome LLM Papers Add your paper to Awesome LLM Papers

When To Continue Thinking: Adaptive Thinking Mode Switching For Efficient Reasoning

Xiaoyun Zhang, Jingqing Ruan, Xing Ma, Yawen Zhu, Haodong Zhao, Hao Li, Jiansong Chen, Ke Zeng, Xunliang Cai . No Venue 2025

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Compositional Generalization Efficiency Ethics & Fairness Productivity Enhancement Reinforcement Learning Tools

Large reasoning models (LRMs) achieve remarkable performance via long reasoning chains, but often incur excessive computational overhead due to redundant reasoning, especially on simple tasks. In this work, we systematically quantify the upper bounds of LRMs under both Long-Thinking and No-Thinking modes, and uncover the phenomenon of “Internal Self-Recovery Mechanism” where models implicitly supplement reasoning during answer generation. Building on this insight, we propose Adaptive Self-Recovery Reasoning (ASRR), a framework that suppresses unnecessary reasoning and enables implicit recovery. By introducing accuracy-aware length reward regulation, ASRR adaptively allocates reasoning effort according to problem difficulty, achieving high efficiency with negligible performance sacrifice. Experiments across multiple benchmarks and models show that, compared with GRPO, ASRR reduces reasoning budget by up to 32.5% (1.5B) and 25.7% (7B) with minimal accuracy loss (1.2% and 0.6% pass@1), and significantly boosts harmless rates on safety benchmarks (up to +21.7%). Our results highlight the potential of ASRR for enabling efficient, adaptive, and safer reasoning in LRMs.

Similar Work