Browseragent: Building Web Agents With Human-inspired Web Browsing Actions | Awesome LLM Papers Add your paper to Awesome LLM Papers

Browseragent: Building Web Agents With Human-inspired Web Browsing Actions

Zhengbo Zhang, Zhiheng Lyu, Junhao Gong, Hongzhu Yi, Xinming Wang, Yuxuan Zhou, Jiabing Yang, Ping Nie, Yan Huang, Wenhu Chen . No Venue 2025

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Agentic Compositional Generalization Fine Tuning Memory & Context Question Answering Tools Training Techniques

Efficiently solving real-world problems with LLMs increasingly hinges on their ability to interact with dynamic web environments and autonomously acquire external information. While recent research like Search-R1 and WebDancer demonstrates strong performance in solving web tasks, they heavily rely on additional tools to convert the interactive web environment into static text content. This is in contrast to human browsing behaviors, which involve diverse interactions with the browser, such as scrolling, clicking, and typing. In this paper, we propose BrowserAgent, a more interactive agent that solves complex tasks through human-inspired browser actions. BrowserAgent operates directly on raw web pages via Playwright through a set of predefined browser actions. We adopt a two-stage training (Supervised Fine-Tuning (SFT) and Rejection Fine-Tuning (RFT)) to improve the model’s generalization abilities. Despite using significantly less training data than Search-R1, BrowserAgent achieves more competitive results across different Open-QA tasks. Additionally, we introduce an explicit memory mechanism to store key conclusions across steps, further enhancing the model’s reasoning capabilities for long-horizon tasks. Notably, BrowserAgent-7B can achieve around 20% improvement over Search-R1 on multi-hop QA tasks like HotpotQA, 2Wiki, and Bamboogle. These results indicate that BrowserAgent can serve as a more advanced framework for more interactive and scalable web agents.

Similar Work