Towards Universal Backward-compatible Representation Learning | Awesome LLM Papers Add your paper to Awesome LLM Papers

Towards Universal Backward-compatible Representation Learning

Binjie Zhang, Yixiao Ge, Yantao Shen, Shupeng Su, Fanzi Wu, Chun Yuan, Xuyuan Xu, Yexin Wang, Ying Shan . Proceedings of the 30th ACM International Conference on Multimedia 2022 – 60 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Security Vision Language

Conventional model upgrades for visual search systems require offline refresh of gallery features by feeding gallery images into new models (dubbed as “backfill”), which is time-consuming and expensive, especially in large-scale applications. The task of backward-compatible representation learning is therefore introduced to support backfill-free model upgrades, where the new query features are interoperable with the old gallery features. Despite the success, previous works only investigated a close-set training scenario (i.e., the new training set shares the same classes as the old one), and are limited by more realistic and challenging open-set scenarios. To this end, we first introduce a new problem of universal backward-compatible representation learning, covering all possible data split in model upgrades. We further propose a simple yet effective method, dubbed as Universal Backward-Compatible Training (UniBCT) with a novel structural prototype refinement algorithm, to learn compatible representations in all kinds of model upgrading benchmarks in a unified manner. Comprehensive experiments on the large-scale face recognition datasets MS1Mv3 and IJB-C fully demonstrate the effectiveness of our method.

Similar Work