The Challenge Of Crafting Intelligible Intelligence | Awesome LLM Papers Add your paper to Awesome LLM Papers

The Challenge Of Crafting Intelligible Intelligence

Daniel S. Weld, Gagan Bansal . Communications of the ACM 2019 – 222 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Datasets Efficiency Image Text Integration Interdisciplinary Approaches Neural Machine Translation Variational Autoencoders

Since Artificial Intelligence (AI) software uses techniques like deep lookahead search and stochastic optimization of huge neural networks to fit mammoth datasets, it often results in complex behavior that is difficult for people to understand. Yet organizations are deploying AI algorithms in many mission-critical settings. To trust their behavior, we must make AI intelligible, either by using inherently interpretable models or by developing new methods for explaining and controlling otherwise overwhelmingly complex decisions using local approximation, vocabulary alignment, and interactive explanation. This paper argues that intelligibility is essential, surveys recent work on building such systems, and highlights key directions for research.

Similar Work