Survey On Deep Multi-modal Data Analytics: Collaboration, Rivalry And Fusion | Awesome LLM Papers Add your paper to Awesome LLM Papers

Survey On Deep Multi-modal Data Analytics: Collaboration, Rivalry And Fusion

Yang Wang . ACM Transactions on Multimedia Computing, Communications, and Applications 2020 – 99 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Applications Survey Paper

With the development of web technology, multi-modal or multi-view data has surged as a major stream for big data, where each modal/view encodes individual property of data objects. Often, different modalities are complementary to each other. Such fact motivated a lot of research attention on fusing the multi-modal feature spaces to comprehensively characterize the data objects. Most of the existing state-of-the-art focused on how to fuse the energy or information from multi-modal spaces to deliver a superior performance over their counterparts with single modal. Recently, deep neural networks have exhibited as a powerful architecture to well capture the nonlinear distribution of high-dimensional multimedia data, so naturally does for multi-modal data. Substantial empirical studies are carried out to demonstrate its advantages that are benefited from deep multi-modal methods, which can essentially deepen the fusion from multi-modal deep feature spaces. In this paper, we provide a substantial overview of the existing state-of-the-arts on the filed of multi-modal data analytics from shallow to deep spaces. Throughout this survey, we further indicate that the critical components for this field go to collaboration, adversarial competition and fusion over multi-modal spaces. Finally, we share our viewpoints regarding some future directions on this field.

Similar Work