Show, Recall, And Tell: Image Captioning With Recall Mechanism | Awesome LLM Papers Add your paper to Awesome LLM Papers

Show, Recall, And Tell: Image Captioning With Recall Mechanism

Li Wang, Zechen Bai, Yonghua Zhang, Hongtao Lu . Proceedings of the AAAI Conference on Artificial Intelligence 2020 – 40 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
AAAI Retrieval Systems Vision Language

Generating natural and accurate descriptions in image cap-tioning has always been a challenge. In this paper, we pro-pose a novel recall mechanism to imitate the way human con-duct captioning. There are three parts in our recall mecha-nism : recall unit, semantic guide (SG) and recalled-wordslot (RWS). Recall unit is a text-retrieval module designedto retrieve recalled words for images. SG and RWS are de-signed for the best use of recalled words. SG branch cangenerate a recalled context, which can guide the process ofgenerating caption. RWS branch is responsible for copyingrecalled words to the caption. Inspired by pointing mecha-nism in text summarization, we adopt a soft switch to balancethe generated-word probabilities between SG and RWS. Inthe CIDEr optimization step, we also introduce an individualrecalled-word reward (WR) to boost training. Our proposedmethods (SG+RWS+WR) achieve BLEU-4 / CIDEr / SPICEscores of 36.6 / 116.9 / 21.3 with cross-entropy loss and 38.7 /129.1 / 22.4 with CIDEr optimization on MSCOCO Karpathytest split, which surpass the results of other state-of-the-artmethods.

Similar Work