Hermes 4 Technical Report | Awesome LLM Papers Add your paper to Awesome LLM Papers

Hermes 4 Technical Report

Ryan Teknium, Roger Jin, Jai Suphavadeeprasit, Dakota Mahan, Jeffrey Quesnelle, Joe Li, Chen Guang, Shannon Sands, Karan Malhotra . No Venue 2025

[Code] [Paper]   Search on Google Scholar   Search on Semantic Scholar
Compositional Generalization Evaluation Training Techniques

We present Hermes 4, a family of hybrid reasoning models that combine structured, multi-turn reasoning with broad instruction-following ability. We describe the challenges encountered during data curation, synthesis, training, and evaluation, and outline the solutions employed to address these challenges at scale. We comprehensively evaluate across mathematical reasoning, coding, knowledge, comprehension, and alignment benchmarks, and we report both quantitative performance and qualitative behavioral analysis. To support open research, all model weights are published publicly at https://huggingface.co/collections/NousResearch/hermes-4-collection-68a731bfd452e20816725728

Similar Work