Deepseekmath: Pushing The Limits Of Mathematical Reasoning In Open Language Models | Awesome LLM Papers Contribute to Awesome LLM Papers

Deepseekmath: Pushing The Limits Of Mathematical Reasoning In Open Language Models

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu, Daya Guo . No Venue 2024

[Paper] [Paper]   Search on Google Scholar   Search on Semantic Scholar
Efficiency Evaluation Model Architecture Prompting Reinforcement Learning Training Techniques

Mathematical reasoning poses a significant challenge for language models due to its complex and structured nature. In this paper, we introduce DeepSeekMath 7B, which continues pre-training DeepSeek-Coder-Base-v1.5 7B with 120B math-related tokens sourced from Common Crawl, together with natural language and code data. DeepSeekMath 7B has achieved an impressive score of 51.7% on the competition-level MATH benchmark without relying on external toolkits and voting techniques, approaching the performance level of Gemini-Ultra and GPT-4. Self-consistency over 64 samples from DeepSeekMath 7B achieves 60.9% on MATH. The mathematical reasoning capability of DeepSeekMath is attributed to two key factors: First, we harness the significant potential of publicly available web data through a meticulously engineered data selection pipeline. Second, we introduce Group Relative Policy Optimization (GRPO), a variant of Proximal Policy Optimization (PPO), that enhances mathematical reasoning abilities while concurrently optimizing the memory usage of PPO.

https://huggingface.co/discussions/paper/65c19a2055c4f06fa9692c9b

Similar Work