Fast And Simplex: 2-simplicial Attention In Triton | Awesome LLM Papers Add your paper to Awesome LLM Papers

Fast And Simplex: 2-simplicial Attention In Triton

Aurko Roy, Timothy Chou, Sai Surya Duvvuri, Sijia Chen, Jiecao Yu, Xiaodong Wang, Manzil Zaheer, Rohan Anil . No Venue 2025

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Compositional Generalization Datasets Efficiency Interdisciplinary Approaches Model Architecture Multimodal Semantic Representation Productivity Enhancement Training Techniques

Recent work has shown that training loss scales as a power law with both model size and the number of tokens, and that achieving compute-optimal models requires scaling model size and token count together. However, these scaling laws assume an infinite supply of data and apply primarily in compute-bound settings. As modern large language models increasingly rely on massive internet-scale datasets, the assumption that they are compute-bound is becoming less valid. This shift highlights the need for architectures that prioritize token efficiency. In this work, we investigate the use of the 2-simplicial Transformer, an architecture that generalizes standard dot-product attention to trilinear functions through an efficient Triton kernel implementation. We demonstrate that the 2-simplicial Transformer achieves better token efficiency than standard Transformers: for a fixed token budget, similarly sized models outperform their dot-product counterparts on tasks involving mathematics, coding, reasoning, and logic. We quantify these gains by demonstrating that 2-simplicial attention changes the exponent in the scaling laws for knowledge and reasoning tasks compared to dot product attention.

Similar Work