Semantic Specialisation Of Distributional Word Vector Spaces Using Monolingual And Cross-lingual Constraints | Awesome LLM Papers Add your paper to Awesome LLM Papers

Semantic Specialisation Of Distributional Word Vector Spaces Using Monolingual And Cross-lingual Constraints

Nikola Mrkšić, Ivan Vulić, Diarmuid Ó Séaghdha, Ira Leviant, Roi Reichart, Milica Gašić, Anna Korhonen, Steve Young . Arxiv 2017 – 47 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Datasets Evaluation Training Techniques

We present Attract-Repel, an algorithm for improving the semantic quality of word vectors by injecting constraints extracted from lexical resources. Attract-Repel facilitates the use of constraints from mono- and cross-lingual resources, yielding semantically specialised cross-lingual vector spaces. Our evaluation shows that the method can make use of existing cross-lingual lexicons to construct high-quality vector spaces for a plethora of different languages, facilitating semantic transfer from high- to lower-resource ones. The effectiveness of our approach is demonstrated with state-of-the-art results on semantic similarity datasets in six languages. We next show that Attract-Repel-specialised vectors boost performance in the downstream task of dialogue state tracking (DST) across multiple languages. Finally, we show that cross-lingual vector spaces produced by our algorithm facilitate the training of multilingual DST models, which brings further performance improvements.

Similar Work