MM-VID: Advancing Video Understanding With Gpt-4v(ision) | Awesome LLM Papers Add your paper to Awesome LLM Papers

MM-VID: Advancing Video Understanding With Gpt-4v(ision)

Kevin Lin, Faisal Ahmed, Linjie Li, Chung-Ching Lin, Ehsan Azarnasab, Zhengyuan Yang, Jianfeng Wang, Lin Liang, Zicheng Liu, Yumao Lu, Ce Liu, Lijuan Wang . No Venue 2023

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Compositional Generalization Image Text Integration Interactive Environments Interdisciplinary Approaches Model Architecture Multimodal Semantic Representation Tools Visual Contextualization

We present MM-VID, an integrated system that harnesses the capabilities of GPT-4V, combined with specialized tools in vision, audio, and speech, to facilitate advanced video understanding. MM-VID is designed to address the challenges posed by long-form videos and intricate tasks such as reasoning within hour-long content and grasping storylines spanning multiple episodes. MM-VID uses a video-to-script generation with GPT-4V to transcribe multimodal elements into a long textual script. The generated script details character movements, actions, expressions, and dialogues, paving the way for large language models (LLMs) to achieve video understanding. This enables advanced capabilities, including audio description, character identification, and multimodal high-level comprehension. Experimental results demonstrate the effectiveness of MM-VID in handling distinct video genres with various video lengths. Additionally, we showcase its potential when applied to interactive environments, such as video games and graphic user interfaces.

Similar Work