Staying In The Sweet Spot: Responsive Reasoning Evolution Via Capability-adaptive Hint Scaffolding | Awesome LLM Papers Add your paper to Awesome LLM Papers

Staying In The Sweet Spot: Responsive Reasoning Evolution Via Capability-adaptive Hint Scaffolding

Ziheng Li, Zexu Sun, Jinman Zhao, Erxue Min, Yongcheng Zeng, Hui Wu, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Xu Chen, Zhi-Hong Deng . No Venue 2025

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Compositional Generalization Efficiency Fine Tuning Interdisciplinary Approaches Multimodal Semantic Representation Productivity Enhancement Reinforcement Learning Tools Training Techniques

Reinforcement learning with verifiable rewards (RLVR) has achieved remarkable success in enhancing the reasoning capabilities of large language models (LLMs). However, existing RLVR methods often suffer from exploration inefficiency due to mismatches between the training data’s difficulty and the model’s capability. LLMs fail to discover viable reasoning paths when problems are overly difficult, while learning little new capability when problems are too simple. In this work, we formalize the impact of problem difficulty by quantifying the relationship between loss descent speed and rollout accuracy. Building on this analysis, we propose SEELE, a novel supervision-aided RLVR framework that dynamically adjusts problem difficulty to stay within the high-efficiency region. SEELE augments each training sample by appending a hint (part of a full solution) after the original problem. Unlike previous hint-based approaches, SEELE deliberately and adaptively adjusts the hint length for each problem to achieve an optimal difficulty. To determine the optimal hint length, SEELE employs a multi-round rollout sampling strategy. In each round, it fits an item response theory model to the accuracy-hint pairs collected in preceding rounds to predict the required hint length for the next round. This instance-level, real-time difficulty adjustment aligns problem difficulty with the evolving model capability, thereby improving exploration efficiency. Experimental results show that SEELE outperforms Group Relative Policy Optimization (GRPO) and Supervised Fine-tuning (SFT) by +11.8 and +10.5 points, respectively, and surpasses the best previous supervision-aided approach by +3.6 points on average across six math reasoning benchmarks.

Similar Work