Seeing And Understanding: Bridging Vision With Chemical Knowledge Via Chemvlm | Awesome LLM Papers Add your paper to Awesome LLM Papers

Seeing And Understanding: Bridging Vision With Chemical Knowledge Via Chemvlm

Junxian Li, di Zhang, Xunzhi Wang, Zeying Hao, Jingdi Lei, Qian Tan, Cai Zhou, Wei Liu, Weiyun Wang, Zhe Chen, Wenhai Wang, Wei Li, Shufei Zhang, Mao Su, Wanli Ouyang, Yuqiang Li, Dongzhan Zhou . No Venue 2024

[Code] [Paper]   Search on Google Scholar   Search on Semantic Scholar
Datasets Evaluation Image Text Integration Model Architecture Visual Contextualization

In this technical report, we propose ChemVLM, the first open-source multimodal large language model dedicated to the fields of chemistry, designed to address the incompatibility between chemical image understanding and text analysis. Built upon the VIT-MLP-LLM architecture, we leverage ChemLLM-20B as the foundational large model, endowing our model with robust capabilities in understanding and utilizing chemical text knowledge. Additionally, we employ InternVIT-6B as a powerful image encoder. We have curated high-quality data from the chemical domain, including molecules, reaction formulas, and chemistry examination data, and compiled these into a bilingual multimodal question-answering dataset. We test the performance of our model on multiple open-source benchmarks and three custom evaluation sets. Experimental results demonstrate that our model achieves excellent performance, securing state-of-the-art results in five out of six involved tasks. Our model can be found at https://huggingface.co/AI4Chem/ChemVLM-26B.

Similar Work