Making Text Embedders Few-shot Learners | Awesome LLM Papers Contribute to Awesome LLM Papers

Making Text Embedders Few-shot Learners

Chaofan Li, Minghao Qin, Shitao Xiao, Jianlyu Chen, Kun Luo, Yingxia Shao, Defu Lian, Zheng Liu . No Venue 2024

[Code] [Paper] [Paper]   Search on Google Scholar   Search on Semantic Scholar
Datasets Few Shot Has Code In Context Learning Model Architecture Tools

Large language models (LLMs) with decoder-only architectures demonstrate remarkable in-context learning (ICL) capabilities. This feature enables them to effectively handle both familiar and novel tasks by utilizing examples provided within their input context. Recognizing the potential of this capability, we propose leveraging the ICL feature in LLMs to enhance the process of text embedding generation. To this end, we introduce a novel model bge-en-icl, which employs few-shot examples to produce high-quality text embeddings. Our approach integrates task-related examples directly into the query side, resulting in significant improvements across various tasks. Additionally, we have investigated how to effectively utilize LLMs as embedding models, including various attention mechanisms, pooling methods, etc. Our findings suggest that retaining the original framework often yields the best results, underscoring that simplicity is best. Experimental results on the MTEB and AIR-Bench benchmarks demonstrate that our approach sets new state-of-the-art (SOTA) performance. Our model, code and dataset are freely available at https://github.com/FlagOpen/FlagEmbedding .

https://huggingface.co/discussions/paper/66f37efb6a5bb2a469ed1476

Similar Work