Contrastive Self-supervised Learning For Commonsense Reasoning | Awesome LLM Papers Add your paper to Awesome LLM Papers

Contrastive Self-supervised Learning For Commonsense Reasoning

Tassilo Klein, Moin Nabi . Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics 2020 – 49 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
ACL Compositional Generalization Interdisciplinary Approaches Model Architecture Question Answering Training Techniques

We propose a self-supervised method to solve Pronoun Disambiguation and Winograd Schema Challenge problems. Our approach exploits the characteristic structure of training corpora related to so-called “trigger” words, which are responsible for flipping the answer in pronoun disambiguation. We achieve such commonsense reasoning by constructing pair-wise contrastive auxiliary predictions. To this end, we leverage a mutual exclusive loss regularized by a contrastive margin. Our architecture is based on the recently introduced transformer networks, BERT, that exhibits strong performance on many NLP benchmarks. Empirical results show that our method alleviates the limitation of current supervised approaches for commonsense reasoning. This study opens up avenues for exploiting inexpensive self-supervision to achieve performance gain in commonsense reasoning tasks.

Similar Work