Towards Flexible Perception With Visual Memory | Awesome LLM Papers Add your paper to Awesome LLM Papers

Towards Flexible Perception With Visual Memory

Robert Geirhos, Priyank Jaini, Austin Stone, Sourabh Medapati, Xi Yi, George Toderici, Abhijit Ogale, Jonathon Shlens . No Venue 2024

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Efficiency Interdisciplinary Approaches Neural Machine Translation Training Techniques Variational Autoencoders

Training a neural network is a monolithic endeavor, akin to carving knowledge into stone: once the process is completed, editing the knowledge in a network is nearly impossible, since all information is distributed across the network’s weights. We here explore a simple, compelling alternative by marrying the representational power of deep neural networks with the flexibility of a database. Decomposing the task of image classification into image similarity (from a pre-trained embedding) and search (via fast nearest neighbor retrieval from a knowledge database), we build a simple and flexible visual memory that has the following key capabilities: (1.) The ability to flexibly add data across scales: from individual samples all the way to entire classes and billion-scale data; (2.) The ability to remove data through unlearning and memory pruning; (3.) An interpretable decision-mechanism on which we can intervene to control its behavior. Taken together, these capabilities comprehensively demonstrate the benefits of an explicit visual memory. We hope that it might contribute to a conversation on how knowledge should be represented in deep vision models – beyond carving it in ``stone’’ weights.

Similar Work