Larimar: Large Language Models With Episodic Memory Control | Awesome LLM Papers Contribute to Awesome LLM Papers

Larimar: Large Language Models With Episodic Memory Control

Payel Das, Subhajit Chaudhury, Elliot Nelson, Igor Melnyk, Sarath Swaminathan, Sihui Dai, Aurélie Lozano, Georgios Kollias, Vijil Chenthamarakshan, Jiří, Navrátil, Soham Dan, Pin-Yu Chen . No Venue 2024

[Paper] [Paper]   Search on Google Scholar   Search on Semantic Scholar
Fine Tuning Memory & Context Model Architecture Training Techniques

Efficient and accurate updating of knowledge stored in Large Language Models (LLMs) is one of the most pressing research challenges today. This paper presents Larimar - a novel, brain-inspired architecture for enhancing LLMs with a distributed episodic memory. Larimar’s memory allows for dynamic, one-shot updates of knowledge without the need for computationally expensive re-training or fine-tuning. Experimental results on multiple fact editing benchmarks demonstrate that Larimar attains accuracy comparable to most competitive baselines, even in the challenging sequential editing setup, but also excels in speed - yielding speed-ups of 4-10x depending on the base LLM - as well as flexibility due to the proposed architecture being simple, LLM-agnostic, and hence general. We further provide mechanisms for selective fact forgetting and input context length generalization with Larimar and show their effectiveness.

https://huggingface.co/discussions/paper/65f9194c9622bdda62c68fae

Similar Work