Glyph: Scaling Context Windows Via Visual-text Compression | Awesome LLM Papers Add your paper to Awesome LLM Papers

Glyph: Scaling Context Windows Via Visual-text Compression

Jiale Cheng, Yusen Liu, Xinyu Zhang, Yulin Fei, Wenyi Hong, Ruiliang Lyu, Weihan Wang, Zhe Su, Xiaotao Gu, Xiao Liu, Yushi Bai, Jie Tang, Hongning Wang, Minlie Huang . No Venue 2025

[Code] [Paper]   Search on Google Scholar   Search on Semantic Scholar
Compositional Generalization Fine Tuning Has Code Image Text Integration Interdisciplinary Approaches Multimodal Semantic Representation Tools Training Techniques Visual Contextualization

Large language models (LLMs) increasingly rely on long-context modeling for tasks such as document understanding, code analysis, and multi-step reasoning. However, scaling context windows to the million-token level brings prohibitive computational and memory costs, limiting the practicality of long-context LLMs. In this work, we take a different perspective-visual context scaling-to tackle this challenge. Instead of extending token-based sequences, we propose Glyph, a framework that renders long texts into images and processes them with vision-language models (VLMs). This approach substantially compresses textual input while preserving semantic information, and we further design an LLM-driven genetic search to identify optimal visual rendering configurations for balancing accuracy and compression. Through extensive experiments, we demonstrate that our method achieves 3-4x token compression while maintaining accuracy comparable to leading LLMs such as Qwen3-8B on various long-context benchmarks. This compression also leads to around 4x faster prefilling and decoding, and approximately 2x faster SFT training. Furthermore, under extreme compression, a 128K-context VLM could scale to handle 1M-token-level text tasks. In addition, the rendered text data benefits real-world multimodal tasks, such as document understanding. Our code and model are released at https://github.com/thu-coai/Glyph.

Similar Work