Dip: Taming Diffusion Models In Pixel Space | Awesome LLM Papers Add your paper to Awesome LLM Papers

Dip: Taming Diffusion Models In Pixel Space

Zhennan Chen, Junwei Zhu, Xu Chen, Jiangning Zhang, Xiaobin Hu, Hanzhen Zhao, Chengjie Wang, Jian Yang, Ying Tai . No Venue 2025

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Diffusion Processes Efficiency Scalability

Diffusion models face a fundamental trade-off between generation quality and computational efficiency. Latent Diffusion Models (LDMs) offer an efficient solution but suffer from potential information loss and non-end-to-end training. In contrast, existing pixel space models bypass VAEs but are computationally prohibitive for high-resolution synthesis. To resolve this dilemma, we propose DiP, an efficient pixel space diffusion framework. DiP decouples generation into a global and a local stage: a Diffusion Transformer (DiT) backbone operates on large patches for efficient global structure construction, while a co-trained lightweight Patch Detailer Head leverages contextual features to restore fine-grained local details. This synergistic design achieves computational efficiency comparable to LDMs without relying on a VAE. DiP is accomplished with up to 10times faster inference speeds than previous method while increasing the total number of parameters by only 0.3%, and achieves an 1.79 FID score on ImageNet 256times256.

Similar Work