Blip3o-next: Next Frontier Of Native Image Generation | Awesome LLM Papers Add your paper to Awesome LLM Papers

Blip3o-next: Next Frontier Of Native Image Generation

Jiuhai Chen, Le Xue, Zhiyang Xu, Xichen Pan, Shusheng Yang, Can Qin, An Yan, Honglu Zhou, Zeyuan Chen, Lifu Huang, Tianyi Zhou, Junnan Li, Silvio Savarese, Caiming Xiong, Ran Xu . No Venue 2025

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Compositional Generalization Image Text Integration Instruction Following Interdisciplinary Approaches Model Architecture Reinforcement Learning Training Techniques Visual Contextualization

We present BLIP3o-NEXT, a fully open-source foundation model in the BLIP3 series that advances the next frontier of native image generation. BLIP3o-NEXT unifies text-to-image generation and image editing within a single architecture, demonstrating strong image generation and image editing capabilities. In developing the state-of-the-art native image generation model, we identify four key insights: (1) Most architectural choices yield comparable performance; an architecture can be deemed effective provided it scales efficiently and supports fast inference; (2) The successful application of reinforcement learning can further push the frontier of native image generation; (3) Image editing still remains a challenging task, yet instruction following and the consistency between generated and reference images can be significantly enhanced through post-training and data engine; (4) Data quality and scale continue to be decisive factors that determine the upper bound of model performance. Building upon these insights, BLIP3o-NEXT leverages an Autoregressive + Diffusion architecture in which an autoregressive model first generates discrete image tokens conditioned on multimodal inputs, whose hidden states are then used as conditioning signals for a diffusion model to generate high-fidelity images. This architecture integrates the reasoning strength and instruction following of autoregressive models with the fine-detail rendering ability of diffusion models, achieving a new level of coherence and realism. Extensive evaluations of various text-to-image and image-editing benchmarks show that BLIP3o-NEXT achieves superior performance over existing models.

Similar Work