Videocanvas: Unified Video Completion From Arbitrary Spatiotemporal Patches Via In-context Conditioning | Awesome LLM Papers Add your paper to Awesome LLM Papers

Videocanvas: Unified Video Completion From Arbitrary Spatiotemporal Patches Via In-context Conditioning

Minghong Cai, Qiulin Wang, Zongli Ye, Wenze Liu, Quande Liu, Weicai Ye, Xintao Wang, Pengfei Wan, Kun Gai, Xiangyu Yue . No Venue 2025

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Evaluation Interdisciplinary Approaches Tools Variational Autoencoders

We introduce the task of arbitrary spatio-temporal video completion, where a video is generated from arbitrary, user-specified patches placed at any spatial location and timestamp, akin to painting on a video canvas. This flexible formulation naturally unifies many existing controllable video generation tasks–including first-frame image-to-video, inpainting, extension, and interpolation–under a single, cohesive paradigm. Realizing this vision, however, faces a fundamental obstacle in modern latent video diffusion models: the temporal ambiguity introduced by causal VAEs, where multiple pixel frames are compressed into a single latent representation, making precise frame-level conditioning structurally difficult. We address this challenge with VideoCanvas, a novel framework that adapts the In-Context Conditioning (ICC) paradigm to this fine-grained control task with zero new parameters. We propose a hybrid conditioning strategy that decouples spatial and temporal control: spatial placement is handled via zero-padding, while temporal alignment is achieved through Temporal RoPE Interpolation, which assigns each condition a continuous fractional position within the latent sequence. This resolves the VAE’s temporal ambiguity and enables pixel-frame-aware control on a frozen backbone. To evaluate this new capability, we develop VideoCanvasBench, the first benchmark for arbitrary spatio-temporal video completion, covering both intra-scene fidelity and inter-scene creativity. Experiments demonstrate that VideoCanvas significantly outperforms existing conditioning paradigms, establishing a new state of the art in flexible and unified video generation.

Similar Work