LASP: Text-to-text Optimization For Language-aware Soft Prompting Of Vision & Language Models | Awesome LLM Papers Add your paper to Awesome LLM Papers

LASP: Text-to-text Optimization For Language-aware Soft Prompting Of Vision & Language Models

Adrian Bulat, Georgios Tzimiropoulos . 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2023 – 40 citations

[Code] [Paper]   Search on Google Scholar   Search on Semantic Scholar
3d Representation CVPR Compositional Generalization Datasets Efficiency Interdisciplinary Approaches Multimodal Semantic Representation Prompting Security Training Techniques

Soft prompt learning has recently emerged as one of the methods of choice for adapting V&L models to a downstream task using a few training examples. However, current methods significantly overfit the training data, suffering from large accuracy degradation when tested on unseen classes from the same domain. To this end, in this paper, we make the following 4 contributions: (1) To alleviate base class overfitting, we propose a novel Language-Aware Soft Prompting (LASP) learning method by means of a text-to-text cross-entropy loss that maximizes the probability of the learned prompts to be correctly classified with respect to pre-defined hand-crafted textual prompts. (2) To increase the representation capacity of the prompts, we propose grouped LASP where each group of prompts is optimized with respect to a separate subset of textual prompts. (3) We identify a visual-language misalignment introduced by prompt learning and LASP, and more importantly, propose a re-calibration mechanism to address it. (4) We show that LASP is inherently amenable to including, during training, virtual classes, i.e. class names for which no visual samples are available, further increasing the robustness of the learned prompts. Through evaluations on 11 datasets, we show that our approach (a) significantly outperforms all prior works on soft prompting, and (b) matches and surpasses, for the first time, the accuracy on novel classes obtained by hand-crafted prompts and CLIP for 8 out of 11 test datasets. Code will be made available at https://www.adrianbulat.com/lasp

Similar Work