Unitxt: Flexible, Shareable And Reusable Data Preparation And Evaluation For Generative AI | Awesome LLM Papers Add your paper to Awesome LLM Papers

Unitxt: Flexible, Shareable And Reusable Data Preparation And Evaluation For Generative AI

Elron Bandel, Yotam Perlitz, Elad Venezian, Roni Friedman-Melamed, Ofir Arviv, Matan Orbach, Shachar Don-Yehyia, Dafna Sheinwald, Ariel Gera, Leshem Choshen, Michal Shmueli-Scheuer, Yoav Katz . No Venue 2024

[Code] [Paper]   Search on Google Scholar   Search on Semantic Scholar
Compositional Generalization Datasets Evaluation Frameworks Evaluation Has Code Interdisciplinary Approaches Multimodal Semantic Representation Productivity Enhancement Tools

In the dynamic landscape of generative NLP, traditional text processing pipelines limit research flexibility and reproducibility, as they are tailored to specific dataset, task, and model combinations. The escalating complexity, involving system prompts, model-specific formats, instructions, and more, calls for a shift to a structured, modular, and customizable solution. Addressing this need, we present Unitxt, an innovative library for customizable textual data preparation and evaluation tailored to generative language models. Unitxt natively integrates with common libraries like HuggingFace and LM-eval-harness and deconstructs processing flows into modular components, enabling easy customization and sharing between practitioners. These components encompass model-specific formats, task prompts, and many other comprehensive dataset processing definitions. The Unitxt-Catalog centralizes these components, fostering collaboration and exploration in modern textual data workflows. Beyond being a tool, Unitxt is a community-driven platform, empowering users to build, share, and advance their pipelines collaboratively. Join the Unitxt community at https://github.com/IBM/unitxt!

Similar Work