Automated Unit Test Improvement Using Large Language Models At Meta | Awesome LLM Papers Add your paper to Awesome LLM Papers

Automated Unit Test Improvement Using Large Language Models At Meta

Nadia Alshahwan, Jubin Chheda, Anastasia Finegenova, Beliz Gokkaya, Mark Harman, Inna Harper, Alexandru Marginean, Shubho Sengupta, Eddy Wang . FSE '24: 32nd ACM International Conference on the Foundations of Software Engineering 2024 – 51 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Compositional Generalization Evaluation Interdisciplinary Approaches Llm For Code Multimodal Semantic Representation

This paper describes Meta’s TestGen-LLM tool, which uses LLMs to automatically improve existing human-written tests. TestGen-LLM verifies that its generated test classes successfully clear a set of filters that assure measurable improvement over the original test suite, thereby eliminating problems due to LLM hallucination. We describe the deployment of TestGen-LLM at Meta test-a-thons for the Instagram and Facebook platforms. In an evaluation on Reels and Stories products for Instagram, 75% of TestGen-LLM’s test cases built correctly, 57% passed reliably, and 25% increased coverage. During Meta’s Instagram and Facebook test-a-thons, it improved 11.5% of all classes to which it was applied, with 73% of its recommendations being accepted for production deployment by Meta software engineers. We believe this is the first report on industrial scale deployment of LLM-generated code backed by such assurances of code improvement.

Similar Work