Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-answer Corpus | Awesome LLM Papers Contribute to Awesome LLM Papers

Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-answer Corpus

Iulian Vlad Serban, Alberto García-Durán, Caglar Gulcehre, Sungjin Ahn, Sarath Chandar, Aaron Courville, Yoshua Bengio . Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) 2016 – 286 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
ACL Uncategorized

Over the past decade, large-scale supervised learning corpora have enabled machine learning researchers to make substantial advances. However, to this date, there are no large-scale question-answer corpora available. In this paper we present the 30M Factoid Question-Answer Corpus, an enormous question answer pair corpus produced by applying a novel neural network architecture on the knowledge base Freebase to transduce facts into natural language questions. The produced question answer pairs are evaluated both by human evaluators and using automatic evaluation metrics, including well-established machine translation and sentence similarity metrics. Across all evaluation criteria the question-generation model outperforms the competing template-based baseline. Furthermore, when presented to human evaluators, the generated questions appear comparable in quality to real human-generated questions.

Similar Work