Multi-reward Reinforced Summarization With Saliency And Entailment | Awesome LLM Papers Contribute to Awesome LLM Papers

Multi-reward Reinforced Summarization With Saliency And Entailment

Ramakanth Pasunuru, Mohit Bansal . Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers) 2018 – 153 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
NAACL Uncategorized

Abstractive text summarization is the task of compressing and rewriting a long document into a short summary while maintaining saliency, directed logical entailment, and non-redundancy. In this work, we address these three important aspects of a good summary via a reinforcement learning approach with two novel reward functions: ROUGESal and Entail, on top of a coverage-based baseline. The ROUGESal reward modifies the ROUGE metric by up-weighting the salient phrases/words detected via a keyphrase classifier. The Entail reward gives high (length-normalized) scores to logically-entailed summaries using an entailment classifier. Further, we show superior performance improvement when these rewards are combined with traditional metric (ROUGE) based rewards, via our novel and effective multi-reward approach of optimizing multiple rewards simultaneously in alternate mini-batches. Our method achieves the new state-of-the-art results (including human evaluation) on the CNN/Daily Mail dataset as well as strong improvements in a test-only transfer setup on DUC-2002.

Similar Work