Rankme: Reliable Human Ratings For Natural Language Generation | Awesome LLM Papers Contribute to Awesome LLM Papers

Rankme: Reliable Human Ratings For Natural Language Generation

Jekaterina Novikova, Ondřej Dušek, Verena Rieser . Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers) 2018 – 80 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
NAACL Uncategorized

Human evaluation for natural language generation (NLG) often suffers from inconsistent user ratings. While previous research tends to attribute this problem to individual user preferences, we show that the quality of human judgements can also be improved by experimental design. We present a novel rank-based magnitude estimation method (RankME), which combines the use of continuous scales and relative assessments. We show that RankME significantly improves the reliability and consistency of human ratings compared to traditional evaluation methods. In addition, we show that it is possible to evaluate NLG systems according to multiple, distinct criteria, which is important for error analysis. Finally, we demonstrate that RankME, in combination with Bayesian estimation of system quality, is a cost-effective alternative for ranking multiple NLG systems.

Similar Work