Chartqa: A Benchmark For Question Answering About Charts With Visual And Logical Reasoning | Awesome LLM Papers Contribute to Awesome LLM Papers

Chartqa: A Benchmark For Question Answering About Charts With Visual And Logical Reasoning

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, Enamul Hoque . Findings of the Association for Computational Linguistics: ACL 2022 2022 – 87 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
ACL Uncategorized

Charts are very popular for analyzing data. When exploring charts, people often ask a variety of complex reasoning questions that involve several logical and arithmetic operations. They also commonly refer to visual features of a chart in their questions. However, most existing datasets do not focus on such complex reasoning questions as their questions are template-based and answers come from a fixed-vocabulary. In this work, we present a large-scale benchmark covering 9.6K human-written questions as well as 23.1K questions generated from human-written chart summaries. To address the unique challenges in our benchmark involving visual and logical reasoning over charts, we present two transformer-based models that combine visual features and the data table of the chart in a unified way to answer questions. While our models achieve the state-of-the-art results on the previous datasets as well as on our benchmark, the evaluation also reveals several challenges in answering complex reasoning questions.

Similar Work