Vilbert: Pretraining Task-agnostic Visiolinguistic Representations For Vision-and-language Tasks | Awesome LLM Papers Contribute to Awesome LLM Papers

Vilbert: Pretraining Task-agnostic Visiolinguistic Representations For Vision-and-language Tasks

Jiasen Lu, Dhruv Batra, Devi Parikh, Stefan Lee . Arxiv 2019 – 1532 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Uncategorized

We present ViLBERT (short for Vision-and-Language BERT), a model for learning task-agnostic joint representations of image content and natural language. We extend the popular BERT architecture to a multi-modal two-stream model, pro-cessing both visual and textual inputs in separate streams that interact through co-attentional transformer layers. We pretrain our model through two proxy tasks on the large, automatically collected Conceptual Captions dataset and then transfer it to multiple established vision-and-language tasks – visual question answering, visual commonsense reasoning, referring expressions, and caption-based image retrieval – by making only minor additions to the base architecture. We observe significant improvements across tasks compared to existing task-specific models – achieving state-of-the-art on all four tasks. Our work represents a shift away from learning groundings between vision and language only as part of task training and towards treating visual grounding as a pretrainable and transferable capability.

Similar Work