Towards Faithfully Interpretable NLP Systems: How Should We Define And Evaluate Faithfulness? | Awesome LLM Papers Contribute to Awesome LLM Papers

Towards Faithfully Interpretable NLP Systems: How Should We Define And Evaluate Faithfulness?

Alon Jacovi, Yoav Goldberg . Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics 2020 – 336 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
ACL Uncategorized

With the growing popularity of deep-learning based NLP models, comes a need for interpretable systems. But what is interpretability, and what constitutes a high-quality interpretation? In this opinion piece we reflect on the current state of interpretability evaluation research. We call for more clearly differentiating between different desired criteria an interpretation should satisfy, and focus on the faithfulness criteria. We survey the literature with respect to faithfulness evaluation, and arrange the current approaches around three assumptions, providing an explicit form to how faithfulness is “defined” by the community. We provide concrete guidelines on how evaluation of interpretation methods should and should not be conducted. Finally, we claim that the current binary definition for faithfulness sets a potentially unrealistic bar for being considered faithful. We call for discarding the binary notion of faithfulness in favor of a more graded one, which we believe will be of greater practical utility.

Similar Work